139 research outputs found

    Harnessing Natural Variation to De-risk Bio-based Economies

    Get PDF

    Deep neural network improves the estimation of polygenic risk scores for breast cancer

    Full text link
    Polygenic risk scores (PRS) estimate the genetic risk of an individual for a complex disease based on many genetic variants across the whole genome. In this study, we compared a series of computational models for estimation of breast cancer PRS. A deep neural network (DNN) was found to outperform alternative machine learning techniques and established statistical algorithms, including BLUP, BayesA and LDpred. In the test cohort with 50% prevalence, the Area Under the receiver operating characteristic Curve (AUC) were 67.4% for DNN, 64.2% for BLUP, 64.5% for BayesA, and 62.4% for LDpred. BLUP, BayesA, and LPpred all generated PRS that followed a normal distribution in the case population. However, the PRS generated by DNN in the case population followed a bi-modal distribution composed of two normal distributions with distinctly different means. This suggests that DNN was able to separate the case population into a high-genetic-risk case sub-population with an average PRS significantly higher than the control population and a normal-genetic-risk case sub-population with an average PRS similar to the control population. This allowed DNN to achieve 18.8% recall at 90% precision in the test cohort with 50% prevalence, which can be extrapolated to 65.4% recall at 20% precision in a general population with 12% prevalence. Interpretation of the DNN model identified salient variants that were assigned insignificant p-values by association studies, but were important for DNN prediction. These variants may be associated with the phenotype through non-linear relationships.Comment: 28 pages, 7 figures, 2 Table

    Recent Advances in the Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants

    Get PDF
    Plant cell walls provide structural support for growth and serve as a barrier for pathogen attack. Plant cell walls are also a source of renewable biomass for conversion to biofuels and bioproducts. Understanding plant cell wall biosynthesis and its regulation is of critical importance for the genetic modification of plant feedstocks for cost-effective biofuels and bioproducts conversion and production. Great progress has been made in identifying enzymes involved in plant cell wall biosynthesis, and in Arabidopsis it is generally recognized that the regulation of genes encoding these enzymes is under a transcriptional regulatory network with coherent feedforward and feedback loops. However, less is known about the transcriptional regulation of plant secondary cell wall (SCW) biosynthesis in woody species despite of its high relevance to biofuels and bioproducts conversion and production. In this article, we synthesize recent progress on the transcriptional regulation of SCW biosynthesis in Arabidopsis and contrast to what is known in woody species. Furthermore, we evaluate progress in related emerging regulatory machineries targeting transcription factors in this complex regulatory network of SCW biosynthesis

    Regulation of Lignin Biosynthesis and Its Role in Growth-Defense Tradeoffs

    Get PDF
    Plant growth-defense tradeoffs are fundamental for optimizing plant performance and fitness in a changing biotic/abiotic environment. This process is thought to involve readjusting resource allocation to different pathways. It has been frequently observed that among secondary cell wall components, alteration in lignin biosynthesis results in changes in both growth and defense. How this process is regulated, leading to growth or defense, remains largely elusive. In this article, we review the canonical lignin biosynthesis pathway, the recently discovered tyrosine shortcut pathway, and the biosynthesis of unconventional C-lignin. We summarize the current model of the hierarchical transcriptional regulation of lignin biosynthesis. Moreover, the interface between recently identified transcription factors and the hierarchical model are also discussed. We propose the existence of a transcriptional co-regulation mechanism coordinating energy allowance among growth, defense and lignin biosynthesis

    Genome-wide analysis of lectin receptor-like kinases in Populus

    Get PDF
    Transcript level of C-type PtLecRLK gene in 24 different datasets from the Populus Gene Atlas Study. RNA-seq data were collected from the Populus Gene Atlas Study in Phytozome v11.0 ( http://phytozome.jgi.doe.gov/pz/portal.html ). The transcript level was expressed as FPKM. The sheet labeled as “whole_set” contains the original FPKM values from Gene Atlas. The data of four different tissues under standard condition are sorted in the data sheet labeled as “standard”. (XLSX 10 kb
    • …
    corecore